Matomo tracking image

Processing

UAG_FDM
Account Menu
  •  Neuer Eintrag
  • Log in
  • Contact us
  •  Dash
  •  Featured collections
  •  Recent
  • Alle Einträge
  •  Help & Support
 All resources
Materialformat
Thema
Fachbereich
Dauer
By date

 Advanced search

%BROWSE_INDENT% %BROWSE_EXPAND% %BROWSE_TEXT% %BROWSE_REFRESH%
Browse by tag
Featured collections
Browse

How to Document Your Research Data 

Full screen preview

Resource tools

Original PDF File

34.2 MB Download

View directly in browser

34.2 MB View in browser
  •  Share
  •  Edit metadata
  •  Lock 
  •  Replace file
  •  Upload preview image

Usage history

 Total downloads
Total number of downloads 5
Resource details

Resource ID

322

Access

Open

Autor*in/Ersteller*in

Thöricht, Heike; Zänkert, Sandra; Steinmann, Lena; Drechsler, Rolf

ORCiD

0000-0002-1822-7559
0000-0001-5386-0555
0000-0001-5443-0581
0000-0002-9872-1740

Geeignet für...

online, präsenz

Veranstaltungsformat

Vortrag, Workshop

Materialformat

Poster

Zielgruppe

Bibliothekar*innen, Data Manager, Data Stewards, FDM-Kontaktstellen, Forschende (PostDoc), Forschende (Projektleitung), Hochschullehrende, Projektleitung, Promovierende, Studierende (Bachelor), Studierende (Master)

Thema

Dokumentation, Grundlagen, Metadaten, Nachnutzung, Ordnung und Struktur, Tools

Fachbereich

generisch

DOI

10.5281/zenodo.8004373

Vorkenntnisse

Keine

Sprache

English

Stichwörter

Dokumentation, Forschungsdaten, FAIR, ELN

Datum

05 June 2023

Lizenz

Creative Commons logo with terms by
Creative Commons Attribution 4.0 International (CC BY 4.0)

Kurzbeschreibung

The "How to Document Your Research Data" poster series provides a comprehensive overview of essential documentation practices for research data. Created with the goal of promoting transparency and reproducibility, these posters highlight key aspects of data documentation and guide researchers in effectively managing their data throughout the research lifecycle. The posters cover Electronic Laboratory Notebooks (ELNs), Codebooks, Model Cards for Machine Learning and Artificial Intelligence models, Datasheets for Machine Learning datasets, Data Nutrition Labels for Artificial Intelligence datasets, and Readme Files. Each poster provides insights into the background, functions, and essential components of these documentation tools.

The posters can be used by scientists looking for the right documentation tool for their research project and by research data management support services at research institutions providing information about documentation in trainings and consultations.

Notes

It is recommended to print the posters on DinA0.

Search for similar resources

View full site
Language: American English
    Web Analytics
  • Home
  • Imprint
  • Data Privacy Statement
The Media Repository is powered by CMS and ResourceSpace